Sections of Fiber Bundles over Surfaces
نویسنده
چکیده
We study the existence problem and the enumeration problem for sections of Serre fibrations over compact orientable surfaces. When the fundamental group of the fiber is finite, a complete solution is given in terms of 2-dimensional cohomology classes associated with certain irreducible representations of this group. The proofs are based on Topological Quantum Field Theory. AMS Subject classification: 57R20, 57R22
منابع مشابه
Holomorphic Fiber Bundles over Riemann Surfaces
For the purpose of this paper a fiber bundle F—>X over a Riemann surface X is meant to be a fiber bundle in the sense of N. Steenrod [62] where the base space is X, the fiber a complex space, the structure group G a complex Lie group that acts as a complex transformation group on the fiber, and the transition functions g%j{x) are holomorphic mappings into G. Correspondingly, cross-sections are ...
متن کاملOn Certain Enumeration Problems in Two-dimensional Topology
We announce a solution to several enumeration problems in topology of surfaces. This includes an enumeration of homotopy classes of sections of locally trivial fiber bundles over surfaces and a computation of non-abelian 1-cohomology of surfaces.
متن کاملTwisted Torus Bundles over Arithmetic Varieties
A twisted torus is a nilmanifold which is the quotient of a real Heisenberg group by a cocompact discrete subgroup. We construct fiber bundles over arithmetic varieties whose fibers are isomorphic to a twisted torus, and express the complex cohomology of such bundles over certain Riemann surfaces in terms of automorphic forms.
متن کاملVector Bundles with Trivial Determinant and Second Chern Class One on Some Nonkähler Surfaces
In this paper we investigate holomorhic rank-2 vector bundles with trivial determinant and second Chern class one on some nonKähler surfaces. The main dificulty one encounters when dealing with holomorphic vector bundles over nonprojective manifolds, is the presence of nonfiltrable such bundles (that is, bundles with no filtration by torsion-free coherent subsheaves) or even of irreducible ones...
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009